Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome differences between two sister desert poplar species under salt stress.

Identifieur interne : 001F92 ( Main/Exploration ); précédent : 001F91; suivant : 001F93

Transcriptome differences between two sister desert poplar species under salt stress.

Auteurs : Jian Zhang ; Jianju Feng ; Jing Lu ; Yongzhi Yang ; Xu Zhang ; Dongshi Wan ; Jianquan Liu [République populaire de Chine]

Source :

RBID : pubmed:24886148

Descripteurs français

English descriptors

Abstract

BACKGROUND

Populus euphratica Oliv and P. pruinosa Schrenk (Salicaceae) both grow in dry desert areas with high summer temperatures. However, P. euphratica is distributed in dry deserts with deep underground water whereas P. pruinosa occurs in deserts in which there is underground water close to the surface. We therefore hypothesized that these two sister species may have evolved divergent regulatory and metabolic pathways during their interaction with different salt habitats and other stresses. To test this hypothesis, we compared transcriptomes from callus exposed to 24 h of salt stress and control callus samples from both species and identified differentially expressed genes (DEGs) and alternative splicing (AS) events that had occurred under salt stress.

RESULTS

A total of 36,144 transcripts were identified and 1430 genes were found to be differentially expressed in at least one species in response to salt stress. Of these DEGs, 884 and 860 were identified in P. euphratica and P. pruinosa, respectively, while 314 DEGs were common to both species. On the basis of parametric analysis of gene set enrichment, GO enrichment in P. euphratica was found to be significantly different from that in P. pruinosa. Numerous genes involved in hormone biosynthesis, transporters and transcription factors showed clear differences between the two species in response to salt stress. We also identified 26,560 AS events which were mapped to 8380 poplar genomic loci from four libraries. GO enrichments for genes undergoing AS events in P. euphratica differed significantly from those in P. pruinosa.

CONCLUSIONS

A number of salt-responsive genes in both P. euphratica and P. pruinosa were identified and candidate genes with potential roles in the salinity adaptation were proposed. Transcriptome comparisons of two sister desert poplar species under salt stress suggest that these two species may have developed different genetic pathways in order to adapt to different desert salt habitats. The DEGs that were found to be common to both species under salt stress may be especially important for future genetic improvement of cultivated poplars or other crops through transgenic approaches in order to increase tolerance of saline soil conditions.


DOI: 10.1186/1471-2164-15-337
PubMed: 24886148
PubMed Central: PMC4035067


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome differences between two sister desert poplar species under salt stress.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
</author>
<author>
<name sortKey="Feng, Jianju" sort="Feng, Jianju" uniqKey="Feng J" first="Jianju" last="Feng">Jianju Feng</name>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
</author>
<author>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China. liujq@nwipb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24886148</idno>
<idno type="pmid">24886148</idno>
<idno type="doi">10.1186/1471-2164-15-337</idno>
<idno type="pmc">PMC4035067</idno>
<idno type="wicri:Area/Main/Corpus">002164</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002164</idno>
<idno type="wicri:Area/Main/Curation">002164</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002164</idno>
<idno type="wicri:Area/Main/Exploration">002164</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome differences between two sister desert poplar species under salt stress.</title>
<author>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
</author>
<author>
<name sortKey="Feng, Jianju" sort="Feng, Jianju" uniqKey="Feng J" first="Jianju" last="Feng">Jianju Feng</name>
</author>
<author>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
</author>
<author>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China. liujq@nwipb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu</wicri:regionArea>
<wicri:noRegion>Gansu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Alternative Splicing (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>Sodium Chloride (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Allèles (MeSH)</term>
<term>Chlorure de sodium (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Alternative Splicing</term>
<term>Genes, Plant</term>
<term>Polymerase Chain Reaction</term>
<term>Sodium Chloride</term>
<term>Species Specificity</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Chlorure de sodium</term>
<term>Gènes de plante</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Régulation positive</term>
<term>Spécificité d'espèce</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
<term>Épissage alternatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Populus euphratica Oliv and P. pruinosa Schrenk (Salicaceae) both grow in dry desert areas with high summer temperatures. However, P. euphratica is distributed in dry deserts with deep underground water whereas P. pruinosa occurs in deserts in which there is underground water close to the surface. We therefore hypothesized that these two sister species may have evolved divergent regulatory and metabolic pathways during their interaction with different salt habitats and other stresses. To test this hypothesis, we compared transcriptomes from callus exposed to 24 h of salt stress and control callus samples from both species and identified differentially expressed genes (DEGs) and alternative splicing (AS) events that had occurred under salt stress.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A total of 36,144 transcripts were identified and 1430 genes were found to be differentially expressed in at least one species in response to salt stress. Of these DEGs, 884 and 860 were identified in P. euphratica and P. pruinosa, respectively, while 314 DEGs were common to both species. On the basis of parametric analysis of gene set enrichment, GO enrichment in P. euphratica was found to be significantly different from that in P. pruinosa. Numerous genes involved in hormone biosynthesis, transporters and transcription factors showed clear differences between the two species in response to salt stress. We also identified 26,560 AS events which were mapped to 8380 poplar genomic loci from four libraries. GO enrichments for genes undergoing AS events in P. euphratica differed significantly from those in P. pruinosa.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>A number of salt-responsive genes in both P. euphratica and P. pruinosa were identified and candidate genes with potential roles in the salinity adaptation were proposed. Transcriptome comparisons of two sister desert poplar species under salt stress suggest that these two species may have developed different genetic pathways in order to adapt to different desert salt habitats. The DEGs that were found to be common to both species under salt stress may be especially important for future genetic improvement of cultivated poplars or other crops through transgenic approaches in order to increase tolerance of saline soil conditions.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24886148</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome differences between two sister desert poplar species under salt stress.</ArticleTitle>
<Pagination>
<MedlinePgn>337</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-337</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Populus euphratica Oliv and P. pruinosa Schrenk (Salicaceae) both grow in dry desert areas with high summer temperatures. However, P. euphratica is distributed in dry deserts with deep underground water whereas P. pruinosa occurs in deserts in which there is underground water close to the surface. We therefore hypothesized that these two sister species may have evolved divergent regulatory and metabolic pathways during their interaction with different salt habitats and other stresses. To test this hypothesis, we compared transcriptomes from callus exposed to 24 h of salt stress and control callus samples from both species and identified differentially expressed genes (DEGs) and alternative splicing (AS) events that had occurred under salt stress.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A total of 36,144 transcripts were identified and 1430 genes were found to be differentially expressed in at least one species in response to salt stress. Of these DEGs, 884 and 860 were identified in P. euphratica and P. pruinosa, respectively, while 314 DEGs were common to both species. On the basis of parametric analysis of gene set enrichment, GO enrichment in P. euphratica was found to be significantly different from that in P. pruinosa. Numerous genes involved in hormone biosynthesis, transporters and transcription factors showed clear differences between the two species in response to salt stress. We also identified 26,560 AS events which were mapped to 8380 poplar genomic loci from four libraries. GO enrichments for genes undergoing AS events in P. euphratica differed significantly from those in P. pruinosa.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">A number of salt-responsive genes in both P. euphratica and P. pruinosa were identified and candidate genes with potential roles in the salinity adaptation were proposed. Transcriptome comparisons of two sister desert poplar species under salt stress suggest that these two species may have developed different genetic pathways in order to adapt to different desert salt habitats. The DEGs that were found to be common to both species under salt stress may be especially important for future genetic improvement of cultivated poplars or other crops through transgenic approaches in order to increase tolerance of saline soil conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jian</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Jianju</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yongzhi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Dongshi</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China. liujq@nwipb.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="N">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="Y">Sodium Chloride</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24886148</ArticleId>
<ArticleId IdType="pii">1471-2164-15-337</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-337</ArticleId>
<ArticleId IdType="pmc">PMC4035067</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jul;54(7):1041-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:651-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Sep;167(3):645-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jan;10(1):71-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23160280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):244-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Oct;137(2):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19678897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Apr 15;29(8):1035-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23428641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Dec;83(6):539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23857471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2011 Apr 20;585(8):1231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Dec;32(12):1541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):173-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Oct 29;218(4571):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17808529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2004 Jun;27(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Dec;31(12):1335-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Apr;33(4):648-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20002333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1437-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Aug;31(3):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12164808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2006 Feb;4(4):343-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17202125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:781-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2007 Oct;7(4):263-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Apr;81(6):525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42931</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Dec;65(6):719-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Dec;44(5):826-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Sep;5(5):1068-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Jun;28(6):947-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18381275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 27;456(7221):470-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S165-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1099-1111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Jul-Aug;28(4):451-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(5):1017-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Jul;10(14):2661-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20455211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2013;5(11):2032-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24121498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jun;51(6):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):1141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(3):387-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jul;30(7):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):239-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e66370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23776666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Feng, Jianju" sort="Feng, Jianju" uniqKey="Feng J" first="Jianju" last="Feng">Jianju Feng</name>
<name sortKey="Lu, Jing" sort="Lu, Jing" uniqKey="Lu J" first="Jing" last="Lu">Jing Lu</name>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
<name sortKey="Zhang, Jian" sort="Zhang, Jian" uniqKey="Zhang J" first="Jian" last="Zhang">Jian Zhang</name>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24886148
   |texte=   Transcriptome differences between two sister desert poplar species under salt stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24886148" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020